If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(x)^2+64(x)=39
We move all terms to the left:
-16(x)^2+64(x)-(39)=0
a = -16; b = 64; c = -39;
Δ = b2-4ac
Δ = 642-4·(-16)·(-39)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-40}{2*-16}=\frac{-104}{-32} =3+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+40}{2*-16}=\frac{-24}{-32} =3/4 $
| 4=k/10+5 | | x-6=63 | | 0.05x=0.010x8900 | | 31d=385 | | 7x+5-3+x=5 | | 12=u/3-12 | | 5-4+7x+1=9x-7 | | g+8=3g-10 | | 9z-10=10z | | 5-4+7x+1=5x+6 | | 3+n/2=6 | | 3x2+6x-7=-20 | | 293x+4)+2=4+3x | | 42=2(2w-3) | | 9z−10=10z | | 17+2w=43 | | (6x-3)+75=180 | | 9s=7s+6 | | 22=y-5 | | 3x-43=2x-7 | | 6(w-2)=-18 | | 6x-15=35-(4x-20) | | 4x+1⁄2(8x+6)=2(4x+3) | | 27=z17 | | v/5+10=35 | | 5u=-8+6u | | 2b-7=14+2b | | n/6=- | | -2v+3=-11 | | (2x-4)^5=4 | | n/6=35 | | 2k+14=-(7k-5 |